

Computer Science & Engineering

Experiment: 1.2

Student Name:	UID:
Branch: CSE	Section/Group
Semester: 1 st	Date of Performance:
Subject Name: Disruptive Technologies	Subject Code: 21ECP-102
1. Aim of the practical:	

Explore, visualize, transform and summarize input datasets for building Classification/regression/prediction models

2. Tool Used: VSCODE

3. Basic Concept/ Command Description:

It is a bundle of many Machine Learning algorithms. Only three lines of code is required to compare 20 ML models. Pycaret is available for:

Classification

Regression Clustering

Computer Science & Engineering

and Discussions:

(a) Install Pycaret

!pip install pycaret &> /dev/null
print("Pycaret installed sucessfully!!")

Pycaret installed sucessfully!!

(b) Get the version of the pycaret

```
from pycaret.utils import version
version()
```

```
'2.3.4'
```

1. Classification: Basics

1.1 Loading Dataset - Loading dataset from pycaret

```
from pycaret.datasets import get_data
#No output
```

1.2 Get the list of datasets available in pycaret (55)

```
#Internet connection is required
datasets = get_data('index')
```


University Institute of Engineering Department of Computer Science & Engineering

	Dataset	Data Types	Default Task	Target Variable 1	Target Variable 2	# Instances	# Attributes	Missing Values
0	anomaly	Multivariate	Anomaly Detection	None	None	1000	10	Ν
1	france	Multivariate	Association Rule Mining	InvoiceNo	Description	8557	8	N
2	germany	Multivariate	Association Rule Mining	InvoiceNo	Description	9495	8	N
3	bank	Multivariate	Classification (Binary)	deposit	None	45211	17	N
4	blood	Multivariate	Classification (Binary)	Class	None	748	5	N
5	cancer	Multivariate	Classification (Binary)	Class	None	683	10	Ν
6	credit	Multivariate	Classification (Binary)	default	None	24000	24	Ν
7	diabetes	Multivariate	Classification (Binary)	Class variable	None	768	9	N
8 6	electrical_grid	Multivariate	Classification (Binary)	stabf	None	10000	14	N
9	employee	Multivariate	Classification (Binary)	left	None	14999	10	N
10	heart	Multivariate	Classification (Binary)	DEATH	None	200	16	Ν
11 ł	neart_disease	Multivariate	Classification (Binary)	Disease	None	270	14	Ν
12	hepatitis	Multivariate	Classification (Binary)	Class	None	154	32	Y
13	income	Multivariate	Classification (Binary)	income >50K	None	32561	14	Y
14	juice	Multivariate	Classification (Binary)	Purchase	None	1070	15	N
15	nba	Multivariate	Classification (Binary)	TARGET_5Yrs	None	1340	21	Ν
16	wine	Multivariate	Classification (Binary)	type	None	6498	13	Ν
17	telescope	Multivariate	Classification (Binary)	Class	None	19020	11	N
18	titanic	Multivariate	Classification (Binary)	Survived	None	891	11	Y

1.3 Get diabetes dataset

O di	abetesDataSet = get	_data("diabetes")					_		
	Number of times pregnant	Plasma glucose concentration a 2 hours in an oral glucose tolerance test	Diastolic blood pressure (mm Hg)	Triceps skin fold thickness (mm)	2-Hour serum insulin (mu U/ml)	Body mass index (weight in kg/(height in m)^2)	Diabetes pedigree function	Age (years)	Class variable
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

Computer Science & Engineering

2.Read data from file

0	<pre>#import pandas as pd #diabetesDataSet = pd.read_csv("diabetes.csv")</pre>
	diabetesDataSet.columns
	<pre>Index(['Number of times pregnant', 'Plasma glucose concentration a 2 hours in an oral glucose tolerance test', 'Diastolic blood pressure (mm Hg)', 'Triceps skin fold thickness (mm)', '2-Hour serum insulin (mu U/ml)',</pre>
	'Body mass index (weight in kg/(height in m)^2)', 'Diabetes pedigree function', 'Age (years)', 'Class variable'], dtype='object')

#Get the statistical summary of the dataset diabetesDataSet.describe()

0	<pre>#import #diabet #Get th diabete</pre>	pandas as pd esDataSet = pd.r e statistical su sDataSet.describ	ead_csv("diabetes.csv") mmary of the dataset e()					1	v ⁽⁵⁾ H v	
		Number of times pregnant	Plasma glucose concentration a 2 hours in an oral glucose tolerance test	Diastolic blood pressure (mm Hg)	Triceps skin fold thickness (mm)	2-Hour serum insulin (mu U/ml)	Body mass index (weight in kg/(height in m)^2)	Diabetes pedigree function	Age (years)	Class variable
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

of Computer Science & Engineering

import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline diabetes = pd.read_csv('/diabetes.csv') print(diabetes.columns)

Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'], dtype='object')

#print("type(df) ",type(diabetesDataSet))

```
print("type->df",type(diabetesDataSet))
```

type->df <class 'pandas.core.frame.DataFrame'>

##Get the dimension of datset

Computer Science & Engineering

0	<pre>import pandas a df = pd.read_cs result = df.hea print("First 5 print(result)</pre>	as pd sv('/diabe ad(5) rows of t	etes.csv') the DataFrame:")				
r.→	First 5 rows of	the Data	Frame:				
L'	Pregnancies	Glucose	BloodPressure	 DiabetesPedigreeFunction	Age	Outcome	
	0 6	148	72	 0.627	50	1	
	1 1	85	66	 0.351	31	0	
	2 8	183	64	 0.672	32	1	
	3 1	89	66	 0.167	21	0	
	4 0	137	40	 2.288	33	1	
	[5 rows x 9 co]	umns]					

#Get the maximum of each column in the dataset

```
[ ] import pandas as pd
     df = pd.read_csv('/diabetes.csv')
     result= df.max()
     print("max value of all columns")
     print(result)
    max value of all columns
    Pregnancies
                                  17.00
    Glucose
                                 199.00
    BloodPressure
                                 122.00
    SkinThickness
                                  99.00
    Insulin
                                 846.00
    BMI
                                  67.10
    DiabetesPedigreeFunction
                                   2.42
    Age
                                  81.00
    Outcome
                                   1.00
    dtype: float64
```


of Computer Science & Engineering

#Get the mean of the all the columns present in the dataset

```
[ ] import pandas as pd
    df = pd.read_csv('/diabetes.csv')
    result = df.mean()
    print("means of all coumns:")
    print(result)
```

means of all coumns:	
Pregnancies	3.845052
Glucose	120.894531
BloodPressure	69.105469
SkinThickness	20.536458
Insulin	79.799479
BMI	31.992578
DiabetesPedigreeFunction	0.471876
Age	33.240885
Outcome	0.348958
dtype: float64	

#Drop the duplicates present in the dataset.

```
[] import pandas as pd
   result = df.drop duplicates()
   print('Result DataFrame:\n', result)
   Result DataFrame:
       Pregnancies Glucose ... Age Outcome
        6 148 ... 50 1
   0
   1
2
             1
                  85 ... 31
                                 0
            8 183 ... 32
                                1
   3
            1
                  89 ... 21
                                0
           0
                 137 ... 33
                                1
   4
                 101 ... 63 Ø
122
          ...
10
   ...
   763
764
            2
            5
                                0
   765
                 121 ... 30
       1
1
   766
                 126 ... 47
                                1
   767
                 93 ... 23
                               0
```

```
[768 rows x 9 columns]
```


Computer Science & Engineering

	Datari alle.							
<bound< th=""><th>d method DataF</th><th>rame.dro</th><th>pna of</th><th>Pregnancies</th><th>Glucose</th><th> Age</th><th>Outcome</th><th></th></bound<>	d method DataF	rame.dro	pna of	Pregnancies	Glucose	 Age	Outcome	
0	6	148 .	50	1				
1	1	85 .	31	0				
2	8	183 .	32	1				
3	1	89 .	21	0				
4	0	137 .	33	1				
••			••••••					
763	10	101 .	63	0				
764	2	122 .	27	0				
765	5	121 .	30	0				
/66	1	126 .	4/	1				
/6/	1	93.	23	0				
[768 rd ill the i impor	ows x 9 column null values v t pandas as	vith '()'					
[768 rd ill the i impor resul print	ows x 9 column null values v t pandas as t = df.filln ('Result Dat	vith '(pd a(0) aFrame:\)' n', res	sult)				
[768 rd ill the i impor resul print Resul	ows x 9 column null values v t pandas as t = df.filln ('Result Data t DataFrame:	vith '(pd a(0) aFrame:\)' n', re:	sult)				
[768 rd ill the i impor resul print Resul	ws x 9 columr null values v t pandas as t = df.filln ('Result Dat t DataFrame: Pregnancies	vith '(pd a(0) aFrame:\ Glucos)' n', res	sult) Age Outcome				
[768 rd ill the : impor resul print Resul 0	ows x 9 column null values v t pandas as t = df.filln ('Result Data t DataFrame: Pregnancies 6	vith '(pd a(0) aFrame:\ Glucos 148	0' n', res e	sult) Age Outcome 50 1				
[768 rd ill the : impor resul print Resul 0 1	ows x 9 column null values v t pandas as t = df.filln ('Result Dat ('Result Dat Pregnancies 6 1	vith '(pd a(0) aFrame:\ Glucos 148 85)' n', res e 	Age Outcome 50 1 31 0				
[768 rd ill the : impor resul: print Resul: 0 1 2	ows x 9 column null values v t pandas as t = df.filln ('Result Dat t DataFrame: Pregnancies 6 1 8	vith '(pd a(0) aFrame:\ Glucos 148 85 183)' n', res e 	Age Outcome 50 1 31 0 32 1				
[768 rd ill the s impor resul print Resul 0 1 2 3	ows x 9 column null values v t pandas as t = df.filln ('Result Data t DataFrame: Pregnancies 6 1 8 1	<pre>vith '(pd a(0) aFrame:\ Glucos 148 85 183 89</pre>)' n', res e 	Age Outcome 50 1 31 0 32 1 21 0				
[768 rd ill the s impor resul print Resul 0 1 2 3 4	ows x 9 column null values v t pandas as t = df.filln ('Result Data t DataFrame: Pregnancies 6 1 8 1 8	s]> vith '(pd a(0) aFrame:\ Glucos 148 85 183 89 137	o' n', res e 	Age Outcome 50 1 31 0 32 1 21 0 33 1				
[768 rd ill the s impor resul print Resul 0 1 2 3 4 	ws x 9 column null values v t pandas as t = df.filln ('Result Data t DataFrame: Pregnancies 6 1 8 1 0	s]> vith '(pd a(0) aFrame:\ Glucos 148 85 183 89 137 	o' n', res e 	Age Outcome 50 1 31 0 32 1 21 0 33 1				
[768 rd ill the s impor resul print Resul 0 1 2 3 4 763	ws x 9 column null values v t pandas as t = df.filln ('Result Dat t DataFrame: Pregnancies 6 1 8 1 0 10	s]> with '(pd a(0) aFrame:\ Glucos 148 85 183 89 137 101	n', res	Age Outcome 50 1 31 0 32 1 21 0 33 1 63 0				
[768 rd ill the s impor resul print Resul 0 1 2 3 4 763 764	ows x 9 column null values v t pandas as t = df.filln ('Result Dat t DataFrame: Pregnancies 6 1 8 1 0 10 2	vith '(pd a(0) aFrame:\ Glucos 148 85 183 89 137 101 122	n', res e 	Age Outcome 50 1 31 0 32 1 21 0 33 1 63 0 27 0				
[768 rd ill the : impor resul print Resul 0 1 2 3 4 763 764 765	ows x 9 column null values v t pandas as t = df.filln ('Result Dat t DataFrame: Pregnancies 6 1 8 1 0 10 2 5	vith '(pd a(0) aFrame:\ Glucos 148 85 183 89 137 101 122 121)' n', res e 	Age Outcome 50 1 31 0 32 1 21 0 33 1 63 0 27 0 30 0				
[768 rd ill the : impor resul print Resul 0 1 2 3 4 763 764 765 766	ows x 9 column null values v t pandas as t = df.filln ('Result Data t DataFrame: Pregnancies 6 1 8 1 0 10 2 5 1	<pre>vith '(pd a(0) aFrame:\ Glucos 148 85 183 89 137 101 122 121 126</pre>)' n', res e 	Age Outcome 50 1 31 0 32 1 21 0 33 1 63 0 27 0 30 0 47 1				
[768 rd ill the s impor resul print Resul 0 1 2 3 4 763 764 765 766	ows x 9 column null values v t pandas as t = df.filln ('Result Data t DataFrame: Pregnancies 6 1 8 1 0 10 2 5 1	s]> vith '(pd a(0) aFrame:\ Glucos 148 85 183 89 137 101 122 121 126	o' n', res e 	Age Outcome 50 1 31 0 32 1 21 0 33 1 63 0 27 0 30 0 47 1				

of Computer Science & Engineering

Scatter plot

```
[ ] import matplotlib. pyplot as plt
import numpy as np
  df =pd.read_csv('/diabetes.csv')
   df. plot(style=".")
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f59f3352410>

Computer Science & Engineering

Subplot

```
[ ] import matplotlib. pyplot as plt
import numpy as np
df =pd.read_csv('/diabetes.csv')
df. plot(kind='line')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f59f28cf1d0>

6. Result and Summary:

PyCaret's Classification Module is a supervised machine learning module which is used for classifying elements into groups. The goal is to predict the categorical class labels which are discrete and unordered. Some common use cases include predicting customer default (Yes or No), predicting customer churn (customer will leave or stay), disease found (positive or negative). This module can be used for binary or multiclass problems.

7. Additional Creative Inputs (If Any):

Learning outcomes (What I have learnt):

1. Getting Data: How to import data from PyCaret repository

2. Setting up Environment: How to setup an experiment in PyCaret and get started with building regression models

University Institute of Engineering Department of Computer Science & Engineering

- **3.** Create Model: How to create a model, perform cross validation and evaluate regression metrics
- 4. Tune Model: How to automatically tune the hyperparameters of a regression model
- **5.** Plot Model: How to analyze model performance using various plots

Sr. No.	Parameters	Marks Obtained	Maximum Marks
1.	Worksheet completion including writinglearning objectives/Outcomes.(To besubmitted at the end of the day)		10
2.	Post Lab Quiz Result.		5
3.	Student Engagement in Simulation/Demonstration/Performanc e and Controls/Pre-Lab Questions.		5
	Signature of Faculty (with Date):	Total Marks Obtained:	20

Evaluation Grid (To be filled by Faculty):

University Institute of Engineering Department of Computer Science & Engineering